Teichoic acid synthesis in Bacillus stearothermophilus.
نویسنده
چکیده
1. Particulate enzyme preparations obtained from Bacillus stearothermophilus B65 by digestion with lysozyme were shown to catalyse teichoic acid synthesis. With CDP-glycerol as sole substrate the preparations synthesized 1,3-poly(glycerol phosphate). It was characterized by alkaline hydrolysis, by glucosylation to the alkali-stable 2-glucosyl-1,3-poly(glycerol phosphate) with excess of UDP-glucose and a Bacillus subtilis Marburg enzyme system, by degradation of this latter product with 60%HF and periodate oxidation of the resulting glucosylglycerol. The specificity of the B. subtilis system previously reported (Glaser & Burger, 1964), was confirmed in the present work. 2. Pulse-labelling experiments, followed by periodate oxidation of the product and isolation of formaldehyde from the glycerol terminus of the polymer, showed that the B. stearothermophilus enzyme system transferred glycerol phosphate units to the glycerol end of the chain. The transfer reaction was irreversible. It was not determined if these poly(glycerol phosphate) chains were synthesized de novo, but it was shown that the newly synthesized oligomers were bound to much larger molecules. 3. When the B. stearothermophilus enzyme system was supplied with both CDP-glycerol and UDP-glucose, 1-glucosyl-2,3-poly(glycerol phosphate) was synthesized in addition to the 1,3-isomer. The former polymer was characterized by acid and alkaline hydrolysis, degradation with HF and periodate oxidation of the resulting glucosylglycerol, and periodate oxidation of the intact polymer followed by mild acid hydrolysis. This latter procedure removed the glucose substituents without disrupting the poly(glycerol phosphate) chain. 4. The poly(glycerol phosphate) isomers were distinguished by glucosylation with the B. subtilis enzymes and alkaline hydrolysis, the 2,3-isomer remaining alkali-labile. The proportion of 2,3-poly(glycerol phosphate) in the product increased with increasing amounts of UDP-glucose in the incubation mixture, but the total glycerol phosphate incorporated into products remained constant. It is suggested that the synthetic pathways of the two poly(glycerol phosphate) species may share a rate-limiting step.
منابع مشابه
The glycerol teichoic acid from the cell wall of Bacillus stearothermophilus B65.
1. A glycerol teichoic acid has been extracted from cell walls of Bacillus stearothermophilus B65 and its structure examined. 2. Trichloroacetic acid-extractable teichoic acid accounted for 68% of the total cell-wall phosphorus and residual material could be hydrolysed to a mixture of products including those characteristic of glycerol teichoic acids. 3. The extracted polymer is composed of gly...
متن کاملWall teichoic acid polymers are dispensable for cell viability in Bacillus subtilis.
An extensive literature has established that the synthesis of wall teichoic acid in Bacillus subtilis is essential for cell viability. Paradoxically, we have recently shown that wall teichoic acid biogenesis is dispensable in Staphylococcus aureus (M. A. D'Elia, M. P. Pereira, Y. S. Chung, W. Zhao, A. Chau, T. J. Kenney, M. C. Sulavik, T. A. Black, and E. D. Brown, J. Bacteriol. 188:4183-4189, ...
متن کاملThe N-acetylmannosamine transferase catalyzes the first committed step of teichoic acid assembly in Bacillus subtilis and Staphylococcus aureus.
There have been considerable strides made in the characterization of the dispensability of teichoic acid biosynthesis genes in recent years. A notable omission thus far has been an early gene in teichoic acid synthesis encoding the N-acetylmannosamine transferase (tagA in Bacillus subtilis; tarA in Staphylococcus aureus), which adds N-acetylmannosamine to complete the synthesis of undecaprenol ...
متن کاملLipid intermediate in the synthesis of the linkage unit that joins teichoic acid to peptidoglycan in Bacillus subtilis.
Membranes from Bacillus subtilis W23 synthesized a lipid precursor of the linkage unit that attaches teichoic acid to the cell wall. It contained glycerophosphoryl-N-acetylglucosamine, linked through an acid-labile bond to a lipid.
متن کاملOn the mode of in vivo assembly of the cell wall of Bacillus subtilis.
During logarithmic growth Bacillus subfilis synthesizes teichoic acid, but not teichuronic acid. Under conditions of phosphate limitation, teichoic acid synthesis stops, and teichuronic acid synthesis is activated. Suitable radioactive labeling experiments have shown that both of these polymers are attached only to glycopeptide chains synthesized at the same time as these specialized polymers a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 138 3 شماره
صفحات -
تاریخ انتشار 1974